Kubernetes已经成为云原生应用编排、管理的事实标准, 越来越多的应用选择向Kubernetes迁移。人工智能和机器学习领域天然的包含大量的计算密集型任务,开发者非常愿意基于Kubernetes构建AI平台,充分利用
Kubernetes存在的问题
Kubeflow在调度环境使用的是Kubernetes的默认调度器。而Kubernetes默认调度器最初主要是为长期运行的服务设计的
资源争抢问题
TensorFlow的作业包含Ps和Worker两种不同的角色,这两种角色的Pod要配合起来完成整个作业,如果只是运行一种角色Pod,整个作业是无法正常执行的,而默认调度器对于Pod调度是逐个进行的,对于Kubeflow作业TFJob的Ps和Worker是不感知的。在集群高负载(资源不足)的情况下,会出现多个作业各自分配到部分资源运行一部分Pod,而又无法正执行完成的状况,从而造成资源浪费。以下图为例,集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。

亲和调度问题
分布式训练中,Ps和Worker存在很频繁的数据交互,所以Ps和Worker之间的带宽直接影响了训练的效率。 Kubernetes默认调度器并不考虑Ps和Worker的这种逻辑关系,Ps和Worker是被随机调度的。如下图所示,2个TFJob(1个Ps + 2 Worker),使用默认

Volcano批量调度系统:加速AI计算的利器
Volcano是一款构建于Kubernetes之上的增强型高性能计算任务批量处理系统。作为一个面向高性能计算场景的平台,它弥补了Kubernetes在机器学习、深度学习、HPC、大数据计算等场景下的基本能力缺失,其中包括gang-sch

实战部署
下载kfctl
首先需要下载kfctl,可以根据系统来选择合适的压缩包文件[1]。
$ tar -xvf kfctl_v1.0.2-0-ga476281_linux.tar.gz
$ sudo mv ./kfctl /usr/local/bin/kfctl
配置环境变量
$ export PATH= $PATH:"<path-to-kfctl>"
$ export KF_NAME=<your choice of name for the Kubeflow deployment>
$ export BASE_DIR=<path to a base directory>
$ export KF_DIR=${BASE_DIR}/${KF_NAME}
$ export CONFIG_URI="https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_k8s_istio.v1.0.2.yaml"
安装kubeflow
$ mkdir -p ${KF_DIR}
$ cd ${KF_DIR}
$ Kfctl apply -V -f ${CONFIG_URI}
通过如下指令确认安装结果
$ kubectl -n kubeflow get all
部署Mnist示例
首先下载kubuflow官方提供的测试集。
git clone https://github.com/kubeflow/examples.git
pip3 install jupyter notebook
jupyter notebook --allow-root ##启动jupyter
启动使用notebook
提供对外接口服务,这里需要将集群下的节点绑定公网IP。如果没有安装notebook请先使用pip3安装。
$ pip3 install jupyter notebook
$ jupyter notebook --allow-root
[W 09:08:03.572 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
[I 09:08:03.575 NotebookApp] Serving notebooks from local directory: /root/examples
[I 09:08:03.575 NotebookApp] Jupyter Notebook 6.3.0 is running at:
[I 09:08:03.575 NotebookApp] http://mytest-87034:30200/
[I 09:08:03.575 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
访问公网IP:30200,输入配置密码即可进入notebook。
在notebook上运行官方实例[2]
1.打开notebook进行TFJob的部署。Open the notebook mnist/mnist_vanilla_k8s.ipynb ,根据指引来进行分布式Tf Job的部署。
2.添加调度器字段:在mnist/mnist_vanilla_k8s.ipynb 的Tarining job parameters代码块下的TFJob的配置如下所示,添加schedulerName: volcano字段,确保使用volcano进行调度。
train_spec = f"""apiVersion: kubeflow.org/v1
kind: TFJob
metadata:
name: {train_name}
spec:
schedulerName: volcano
tfReplicaSpecs:
Ps:
replicas: {num_ps}
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
serviceAccount: default-editor
containers:
- name: tensorflow
command:
- python
- /opt/model.py
- --tf-model-dir={model_dir}
- --tf-export-dir={export_path}
- --tf-train-steps={train_steps}
- --tf-batch-size={batch_size}
- --tf-learning-rate={learning_rate}
env:
- name: S3_ENDPOINT
value: {s3_endpoint}
- name: AWS_ENDPOINT_URL
value: {minio_endpoint}
- name: AWS_REGION
value: {minio_region}
- name: BUCKET_NAME
value: {mnist_bucket}
- name: S3_USE_HTTPS
value: "0"
- name: S3_VERIFY_SSL
value: "0"
- name: AWS_ACCESS_KEY_ID
value: {minio_username}
- name: AWS_SECRET_ACCESS_KEY
value: {minio_key}
image: {image}
workingDir: /opt
restartPolicy: OnFailure
Chief:
replicas: 1
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
serviceAccount: default-editor
containers:
- name: tensorflow
command:
- python
- /opt/model.py
- --tf-model-dir={model_dir}
- --tf-export-dir={export_path}
- --tf-train-steps={train_steps}
- --tf-batch-size={batch_size}
- --tf-learning-rate={learning_rate}
env:
- name: S3_ENDPOINT
value: {s3_endpoint}
- name: AWS_ENDPOINT_URL
value: {minio_endpoint}
- name: AWS_REGION
value: {minio_region}
- name: BUCKET_NAME
value: {mnist_bucket}
- name: S3_USE_HTTPS
value: "0"
- name: S3_VERIFY_SSL
value: "0"
- name: AWS_ACCESS_KEY_ID
value: {minio_username}
- name: AWS_SECRET_ACCESS_KEY
value: {minio_key}
image: {image}
workingDir: /opt
restartPolicy: OnFailure
Worker:
replicas: 1
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
serviceAccount: default-editor
containers:
- name: tensorflow
command:
- python
- /opt/model.py
- --tf-model-dir={model_dir}
- --tf-export-dir={export_path}
- --tf-train-steps={train_steps}
- --tf-batch-size={batch_size}
- --tf-learning-rate={learning_rate}
env:
- name: S3_ENDPOINT
value: {s3_endpoint}
- name: AWS_ENDPOINT_URL
value: {minio_endpoint}
- name: AWS_REGION
value: {minio_region}
- name: BUCKET_NAME
value: {mnist_bucket}
- name: S3_USE_HTTPS
value: "0"
- name: S3_VERIFY_SSL
value: "0"
- name: AWS_ACCESS_KEY_ID
value: {minio_username}
- name: AWS_SECRET_ACCESS_KEY
value: {minio_key}
image: {image}
workingDir: /opt
restartPolicy: OnFailure
"""
3.提交作业
kubectl apply -f mnist.yaml
参考文献
[1] 华为云CCE kubeflow on volcano文档
[2] kfctl v1.0.2
[3] kubeflow on k8s 官方文档
[4] 机器学习场景下,Volcano集成调度能力实践